Integration of Text and Audio Features for Genre Classification in Music Information Retrieval
نویسندگان
چکیده
Multimedia content can be described in versatile ways as its essence is not limited to one view. For music data these multiple views could be a song’s audio features as well as its lyrics. Both of these modalities have their advantages as text may be easier to search in and could cover more of the ‘content semantics’ of a song, while omitting other types of semantic categorisation. (Psycho)acoustic feature sets, on the other hand, provide the means to identify tracks that ‘sound similar’ while less supporting other kinds of semantic categorisation. Those discerning characteristics of different feature sets meet users’ differing information needs. We will explain the nature of text and audio feature sets which describe the same audio tracks. Moreover, we will propose the use of textual data on top of low level audio features for music genre classification. Further, we will show the impact of different combinations of audio features and textual features based on content words.
منابع مشابه
شناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملMusic Genre Classification Using Text Categorization Method
Automatic music genre classification is one of the most challenging problems in music information retrieval and management of digital music database. In this paper, we propose a new method to classify music genres using text categorization methods. Differing from previous solutions which were mainly based on analysis on acoustic or symbolic audio signal, here we consider music as a text-like se...
متن کاملMulti-modal Analysis of Music: A large-scale Evaluation
Multimedia data by definition comprises several different types of content modalities. Music specifically inherits e.g. audio at its core, text in the form of lyrics, images by means of album covers, or video in the form of music videos. Yet, in many Music Information Retrieval applications, only the audio content is utilised. Recent studies have shown the usefulness of incorporating other moda...
متن کاملRhyme and Style Features for Musical Genre Classification by Song Lyrics
How individuals perceive music is influenced by many different factors. The audible part of a piece of music, its sound, does for sure contribute, but is only one aspect to be taken into account. Cultural information influences how we experience music, as does the songs’ text and its sound. Next to symbolic and audio based music information retrieval, which focus on the sound of music, song lyr...
متن کاملMusic Genre Categorization in Humans and Machines
Music Genre Classification is one of the most active tasks in Music Information Retrieval (MIR). Many successful approaches can be found in literature. Most of them are based on Machine Learning algorithms applied to different audio features automatically computed for a specific database. But there is no computational model that explains how musical features are combined in order to yield genre...
متن کامل